смещение поршневого пальца в какую сторону

fonar lampochka osveshchenie 197304 1280x720 Статьи

поршни hastings (Урал)

Приобрёл поршни и кольца hastings на 79,расточил цилиндры. Потом узнал что отверстие под поршневой палец смещено.А теперь вопрос: Подскажите пожалуйста, куда смещением ставить вверх или вниз? Заранее благодарю.

и ваще там стрелки должны быть. их нужно вперёд.

в инструкции по ремонту всё написано для непонятливых.

упаковку от поршней покажи. и маркировку, и если можно сами поршня. чет я ваще не понял что ты вставляешь, и как может поршень затирать?

Вомбат, проблема будет как раз в том, что бы аккуратно снять эти три (именно!) сотки. Притереть цилиндр не проще будет?

Если расточить цилиндр под поршень с правильным зазором, то все ок будет.
НО: масса поршня, пальца и колец в одном и другом горшке не должны отличаться больше, чем на 4 грамма, чтобы 2 котла хоть как-то друг друга компенсировали. Взвесь поршни, наверняка между ними грамм 30-50 🙂

Почему ось отверстия ступицы у многих поршней смещена?
Из-за вращения коленчатого вала шатун в большинстве позиций находится под наклоном. Вследствие чего при обратном движении поршень прижимается к одной из стенок. В верхней мертвой точке поршня шатун принимает строго вертикальное положение, затем он наклоняется в другую сторону. В результате поршень соприкасается с разными стенками цилиндра. Для того, чтобы касание происходило по возможности бесшумно и мягко, отверстие для поршневого пальца несколько смещается в сторону. Этим мы добиваемся того, что поршень во время смены точки касания несколько наклоняется в сторону оси пальца. В результате поршень соприкасается с внутренним диаметром цилиндра не всей длиной, а юбкой и скользит. Это снижает шум в двигателе, а также механическую нагрузку на компоненты двигателя.

Обычно отверстие ступицы смещено в направлении напорной стороны поршня. Но нет правил без исключений:
в некоторых поршнях отверстие смещено в противоположную сторону – результат, однако, не отличается.

При большом зазоре и холодном двигателе появляется стук поршня, головка поршня перемещается относительно поршневых колец, что приводит к увеличению износа поршневых колец и торцов их канавок в поршне. Для уменьшения этого эффекта ось пальца смещается относительно оси цилиндра или ось цилиндра смещается относительно оси коленчатого вала (дезаксаж или дезак-сиал). Для уменьшения зазора в верхней части поршня и, следовательно, для снижения выброса СН, а также уменьшения шума от перекладки и износа канавок и самих колец, при его отливке в кокиль закладываются жаростойкие вставки в зоне верхнего поршневого кольца. В некоторых конструкциях в зоне бобышек поршневого пальца в кокиль устанавливаются кольца или стальные пластины, уменьшающие линейное расширение поршня и предотвращающие его задиры. К числу оригинальных решений относится конструкция поршня, у которого на поршневом пальце на отдельных бобышках сидят раздельные головка и юбка. Это позволяет уменьшить зазор в зоне юбки, снизить влияние перекладки поршня.

Источник

ФОРУМ МОТОРИСТОВ

Форум для общения мотористов, водителей и любопытных

Подскажите

Подскажите

Сообщение Игорек » 02 мар 2011, 20:22

Сообщение AleksandrA » 02 мар 2011, 21:01

Сообщение Игорек » 02 мар 2011, 21:10

Сообщение Georgiy » 02 мар 2011, 21:22

Лучше напишите что конкретно сделать хотите. Проще будет.

А то мы тут недавно калиновское колено в 083-й блок впихнули.

Сообщение AleksandrA » 02 мар 2011, 21:30

Сообщение Georgiy » 02 мар 2011, 21:36

не совсем так. Что мешает 2110 поршень собрать с 083-м шатуном? Стопороные кольца не пользуем, делаем оправочку (чтобы не окарать с пальцем при сборке и вперёд. Правда плавающий палец всё-таки приятней.

Длина у шатунов одинаковая, поршни идентичные кроме канавок под стопорные кольца. Можно и 2112 поршни вкорячить, но тогда при обрыве ремня ГРМ получим скандал.

Сообщение AleksandrA » 02 мар 2011, 21:46

Сообщение Georgiy » 02 мар 2011, 21:52

Кто-то бывает жмот, а иногда размера нужного не оказывается, вот и колхозим.

Собирали недавно 083-й мотор и упёрлись в то, что мотордеталь на 82,8 во всех магазинах отсутствовала. Поставили СТК. Результат под наблюдением. Пока всё ровно.

Сообщение crazy_digger » 03 мар 2011, 08:50

Сообщение Игорек » 03 мар 2011, 12:45

Georgiy писал(а): Лучше напишите что конкретно сделать хотите. Проще будет.

А то мы тут недавно калиновское колено в 083-й блок впихнули.

Сообщение Dimon18 » 03 мар 2011, 17:38

Georgiy писал(а): Лучше напишите что конкретно сделать хотите. Проще будет.

А то мы тут недавно калиновское колено в 083-й блок впихнули.

Источник

Моторист-конструктор» или как правильно собрать двигатель? ч. 2

АЛЕКСАНДР ХРУЛЕВ, кандидат технических наук
СЕРГЕЙ СТАРЫХ

Лакмусовой бумажкой, позволяющей отличить моториста-профессионала от дилетанта, является отношение к контрольно-измерительным операциям при сборке узла. И дело не только в том, что измерение геометрии каждой детали требует терпения и скрупулезности. Необходимо понимать смысл этих операций, а для этого моторист должен четко знать технологию ремонтных операций, не входящих непосредственно в процесс сборки двигателя, например, как шлифуют коленчатый вал или растачивают и хонингуют блок цилиндров.

Зачем, спросите? Ведь расточник по размеру поршней может сам определить диаметр цилиндров, а после обработки блока проконтролировать результат.

Действительно, может. Только ответственность за сборку, а значит, и за работу двигателя после ремонта несет моторист-механик. Так что делайте выводы, стоит ли тратить время на контрольные замеры, или ими можно пренебречь.

Это должен знать каждый

Растачивание цилиндров обычно выполняют на вертикально-расточном станке. При этом необходимо обеспечить перпендикулярность поверхности цилиндра к оси постелей коленчатого вала. Особое внимание уделяется окончательному размеру после расточки. Величина припуска под хонингование должна быть не менее 0,0,08 мм. Дело в том, что при растачивании резец деформирует поверхность металла, завальцовывая графитовые зерна, содержащиеся в чугуне (графит, выходящий на поверхность, обеспечивает низкое трение поршневых колец и, соответственно, малый износ колец и самих цилиндров). Если припуск окажется слишком малым, то после хонингования графитовые зерна не вскроются.

Препятствовать открытию зерен графита могут и неправильно выбранные режимы хонингования, условия подачи смазки в зону хонингования, тип смазывающего материала.

Хонингование цилиндров выполняют на вертикально-хонинговальных станках. Суть этой операции вовсе не в заглаживании рисок от резца, как ошибочно полагают некоторые механики. При хонинговании за счет вращения и возвратно-поступательного движения головки с абразивными брусками на поверхности цилиндров намеренно создается шероховатость в виде сетки рисок определенной глубины, способных удерживать масло и тем самым смазывать поршневые кольца и поршни.

Для получения необходимого микропрофиля поверхности, а именно сравнительно глубоких впадин и сглаженных выступов, хонингование выполняется в несколько операций (переходов). Черновое хонингование выполняют абразивными брусками с зернистостью 150, съем металла составляет около 0,06 мм. Далее следует чистовое хонингование брусками с зернистостью 280 (съем приблизительно 0,02 мм). И, наконец, отделочное хонингование брусками зернистостью 600 со съемом менее 0,005 мм (так называемое платохонингование).

Именно такая технология обеспечивает сглаживание выступов, фактически приближая профиль поверхности к той, какая будет после приработки деталей. В последние годы финишные операции хонингования стали заменять обработкой поверхности с помощью специальных абразивных щеток, дополнительно заглаживающих заусеницы на краях впадин (рисок).

Как проверить блок цилиндров?

Для блоков с установленными в нем гильзами требуется еще ряд проверок. Верхняя плоскость бурта гильз должна выступать над плоскостью блока на 0,0,1 мм для «мокрых» и 0,1 мм для «сухих» гильз. Кроме того, опорные поверхности бурта на гильзе и выточки в блоке должны быть плоскопараллельны, а фаска на выточке должна быть больше, чем радиус перехода от бурта к цилиндрической части на гильзе (в противном случае гильза может треснуть). «Мокрые» гильзы, помимо этого, должны легко вставляться в свои гнезда на блоке (поверхность гнезд необходимо предварительно хорошо очистить). «Сухие» гильзы, напротив, запрессовываются в блок с натягом около 0,05 мм, причем поверхности сопряжения гильзы и блока должны быть гладкими, чтобы обеспечить хороший тепловой контакт и герметичность.

Верхний край цилиндров после ремонта может быть острым, что затрудняет установку поршней с кольцами и даже может спровоцировать поломку колец. Поэтому этот край следует обязательно притупить, сделав с помощью шабера небольшую фаску.

Как проверить поршень и шатун?

Разница между диаметром цилиндра и размером поршня составляет искомый зазор: практика показала, что оптимальной является величина зазора, превышающая минимально допустимое значение на 0,0,02 мм.

Иная ситуация с поршнями, имеющими антифрикционное графитовое покрытие юбки (оно имеет характерный черный цвет). Если у поршня покрытие сплошное, то истинный размер юбки будет меньше измеренного на толщину слоя покрытия 0,0,02 мм. Поршни с покрытием, нанесенным трафаретным способом, замеряются в специальных точках, где графитовый слой отсутствует.

Сборка поршней с шатунами выполняется различными способами в зависимости от того, какой тип пальцев используется. «Плавающий» палец входит в отверстие бобышки поршня «от руки». Важно только не перепутать направление установки деталей и не забыть смазать палец маслом. Далее следует установить в канавки новые стопорные кольца, причем их стыки должны быть ориентированы в направлении движения поршней, иначе кольцо может выскочить из канавки при работе двигателя. По этой же причине нельзя использовать стопорные кольца, бывшие в употреблении.

У некоторых старых отечественных двигателей посадка пальца в поршне может быть слишком плотной. Использовать молоток для «заколачивания» пальцев нельзя, достаточно прогреть поршни до 80oС, и пальцы войдут «от руки».

В конструкциях с фиксированным пальцем сборка сложнее. Во-первых, необходима оправка, обеспечивающая точную установку пальца по середине поршня. Кроме того, шатун следует нагреть в муфельной печи или в крайнем случае на электроплите до 320oС, чтобы палец свободно вошел в отверстие его верхней головки. Ни в коем случае нельзя использовать открытое пламя для нагрева шатуна, а также «забивать» палец молотком, что иногда практикуется в некоторых мастерских.

Проверка поршневых колец

Бывает, что производители поставляют поршни без поршневых колец. Учитывая большое количество модификаций, которые имеют некоторые двигатели, желательно проверить высоту и радиальную ширину поршневых колец на предмет их соответствия канавкам поршней.

Зазор между торцами кольца и канавки можно определить различными способами, но проще всего установить кольцо в канавку и воспользоваться набором щупов. Торцевой зазор должен составлять в среднем 0,0,1 мм. Если зазор оказывается свыше 0,12 мм, то это означает, что кольцо или канавка поршня имеют недопустимые отклонения размеров.

Не менее важно проверить зазор в замках колец, для чего кольца поочередно устанавливают в верхнюю часть цилиндра. Зазор в замке замеряют с помощью набора щупов. Он составляет в среднем 0,0,6 мм.

Установка колец на поршень

На верхних кольцах направление сборки обычно обозначается словом ТОР (вершина). Стороной с этой надписью кольцо должно быть обращено к днищу поршня. Средние кольца скребкового типа монтируются скребком вниз. У колец с фаской на внутренней поверхности фаска чаще всего обращена вверх.

Среднее и верхнее кольца устанавливают на поршень после монтажа маслосъемного. Для того чтобы не сломать и не деформировать кольца, желательно пользоваться специальными клещами. После установки колец необходимо проверять легкость их вращения в канавках.

Установка поршней в блок цилиндров

После затягивания болтов крышек шатунов обязательно контролируется величина выступания днища поршней над верхней плоскостью блока (при положении поршней в ВМТ). Это значение определяется заводом-изготовителем двигателя. Если таких данных нет, то, с учетом толщины прокладки, зазор между поршнем и головкой блока не должен быть меньше 1 мм.

На этом сборка шатунно-поршневой группы закончена. Однако деталям ЦПГ еще предстоит обкатка на пониженных оборотах и нагрузках. При этом детали взаимно прирабатываются, загрязняя масло частицами износа, вследствие чего первую замену масла и масляного фильтра проводят не позднее, чем через 500 км пробега после ремонта.

Допуски на диаметр цилиндра

Номинальный размер цилиндра, мм Допуск, мм
50 0,011
80 0,013
120 0,015
180 0,018

Чтобы не повредить кольца, на краю цилиндров надо сделать небольшую фаску

Для установки колец на поршень лучше всего пользоваться специальными клещами

Вставлять поршни в сборе с кольцами и шатунами в цилиндр удобно с помощью ленточной оправки

Обращаем ваше внимание на то, что данный интернет-сайт носит исключительно информационный характер и ни при каких условиях не является публичной офертой, определяемой положениями Статьи 437 Гражданского кодекса Российской Федерации. Для получения подробной информации пожалуйста, обращайтесь по телефону 812-3880855 или другими способами указанными вконтактах.

Источник

Положение поршня в цилиндре

Подвижные детали КШМ

Поршневая группа

Поршневая группа образует подвижную стенку рабочего объема цилиндра. Именно перемещение этой «стенки», т. е. поршня, является показателем работы, выполненной сгоревшими и расширяющимися газами.
Поршневая группа кривошипно-шатунного механизма включает в себя поршень, поршневые кольца (компрессионные и маслосъемные), поршневой палец и фиксирующие его детали. Иногда поршневую группу рассматривают вместе с цилиндром, и называют цилиндропоршневой группой.

Поршень

Требования, предъявляемые к конструкции поршня

Поршень воспринимает силу давления газов и передает ее через поршневой палец шатуну. При этом он совершает прямолинейное возвратно-поступательное движение.

Условия, в которых работает поршень:

porshni dvs

Возвратно-поступательное движение поршня вызывает значительные инерционные нагрузки в зонах прохода мертвых точек, где поршень изменяет направление движения на противоположное. Инерционные силы зависят от скорости перемещения поршня и его массы.

Поршень воспринимает значительные усилия: более 40 кН в бензиновых двигателях, и 20 кН – в дизелях. Контакт с горячими газами вызывает нагрев центральной части поршня до температуры 300…350 ˚С. Сильный нагрев поршня опасен возможностью заклинивания в цилиндре из-за температурного расширения, и даже прогоранием днища поршня.

Перемещение поршня сопровождается повышенным трением и, как следствие, изнашиванием его поверхности и поверхности цилиндра (гильзы). Во время движения поршня от верхней мертвой точки к нижней и обратно сила давления поверхности поршня на поверхность цилиндра (гильзы) изменяется и по величине, и по направлению в зависимости от такта, протекающего в цилиндре.

Максимальное давление поршень оказывает на стенку цилиндра при такте рабочего хода, в момент, когда шатун начинает отклоняться от оси поршня. При этом сила давления газов, передаваемая поршнем шатуну, вызывает реактивную силу в поршневом пальце, который в данном случае является цилиндрическим шарниром. Эта реакция направлена от поршневого пальца вдоль линии шатуна, и может быть разложена на две составляющие – одна направлена вдоль оси поршня, вторая (боковая сила) перпендикулярна ей и направлена по нормали к поверхности цилиндра.

Именно эта (боковая) сила и вызывает значительное трение между поверхностями поршня и цилиндра (гильзы), приводящее к их износу, дополнительному нагреву деталей и снижению КПД из-за потерь энергии.

Попытки уменьшить силы трения между поршнем и стенками цилиндра осложняются тем, что между цилиндром и поршнем необходим минимальный зазор, обеспечивающий полную герметизацию рабочей полости с целью не допустить прорыв газов, а также попадание масла в рабочее пространство цилиндра. Величина зазора между поршнем и поверхностью цилиндра лимитируется тепловым расширением деталей. Если его сделать слишком малым, в соответствии с требованиями герметичности, то возможно заклинивание поршня в цилиндре из-за теплового расширения.

При изменении направления движения поршня и процессов (тактов), протекающих в цилиндре, сила трения поршня о стенки цилиндра меняет характер – поршень прижимается к противоположной стенке цилиндра, при этом в зоне перехода мертвых точек поршень совершает удары по цилиндру из-за резкого изменения величины и направления нагрузки.

Конструкторам, при разработке двигателей, приходится решать комплекс проблем, связанных с описанными выше условиями работы деталей цилиндропоршневой группы:

Исходя из этого, к конструкции поршня предъявляются следующие требования:

Особенности конструкции поршня

Поршни современных автомобильных двигателей имеют сложную пространственную форму, которая обусловлена различными факторами и условиями, в которых работает эта ответственная деталь. Многие элементы и особенности формы поршня не заметны невооруженным глазом, поскольку отклонения от цилиндричности и симметрии минимальны, тем не менее, они присутствуют.
Рассмотрим подробнее – как устроен поршень двигателя внутреннего сгорания, и на какие хитрости приходится идти конструкторам, чтобы обеспечить выполнение требований, изложенных выше.

Поршень двигателя внутреннего сгорания состоит из верхней части – головки и нижней – юбки.

porshen

Верхняя часть головки поршня – днище непосредственно воспринимает усилия со стороны рабочих газов. В бензиновых двигателях днище поршня обычно делают плоским. В поршневых днищах дизелей часто выполняют камеру сгорания.

Днище поршня представляет собой массивный диск, который соединяется с помощью ребер или стоек с приливами, имеющими отверстия для поршневого пальца – бобышками. Внутренняя поверхность поршня выполняется в виде арки, что обеспечивает необходимую жесткость и теплоотвод.

На боковой поверхности поршня прорезаны канавки для поршневых колец. Число поршневых колец зависит от давления газов и средней скорости перемещения поршня (т. е. частоты вращения коленчатого вала двигателя) – чем меньше средняя скорость поршня, тем больше требуется колец.
В современных двигателях, наряду с ростом частоты вращения коленчатого вала, наблюдается тенденция к сокращению числа компрессионных колец на поршнях. Это обусловлено необходимостью уменьшения массы поршня с целью снижения инерционных нагрузок, а также уменьшения сил трения, отнимающих существенную долю мощности двигателя. При этом возможность прорыва газов в картер высокооборотистого двигателя считается менее актуальной проблемой. Поэтому в двигателях современных легковых и гоночных автомобилей можно встретить конструкции с одним компрессионным кольцом на поршне, а сами поршни имеют укороченную юбку.

Кроме компрессионных колец на поршне устанавливают одно или два маслосъемных кольца. Канавки, выполненные в поршне под маслосъемные кольца, имеют дренажные отверстия для отвода моторного масла во внутреннюю полость поршня при снятии его кольцом с поверхности цилиндра (гильзы). Это масло обычно используется для охлаждения внутренней поверхности днища и юбки поршня, а затем стекает в поддон картера.

porshen 4

Форма днища поршня зависит от типа двигателя, способа смесеобразования и формы камеры сгорания. Наиболее распространена плоская форма днища, хотя встречаются выпуклая и вогнутая. В некоторых случаях в днище поршня выполняют углубления для тарелок клапанов при расположении поршня в верхней мертвой точке (ВМТ). Как упоминалось выше, в днищах поршней дизельных двигателей нередко выполняют камеры сгорания, форма которых может различной.

Нижняя часть поршня – юбка направляет поршень в прямолинейном движении, при этом она передает стенке цилиндра боковое усилие, величина которого зависит от положения поршня и процессов, протекающих в рабочей полости цилиндра. Величина бокового усилия, передаваемого юбкой поршня, значительно меньше максимального усилия, воспринимаемого днищем со стороны газов, поэтому юбка выполняется относительно тонкостенной.

В нижней части юбки у дизелей часто устанавливают второе маслосъемное кольцо, что позволяет улучшить смазывание цилиндра и уменьшить вероятность попадания масла в рабочую полость цилиндра. Для уменьшения массы поршня и сил трения ненагруженные части юбки срезают по диаметру и укорачивают по высоте. Внутри юбки обычно выполняются технологические приливы, которые используются для подгонки поршней по массе.

porshen 2

Конструкция и размеры поршней зависят главным образом от быстроходности двигателя, а также от величины и скорости нарастания давления газов. Так, поршни быстроходных бензиновых двигателей максимально облегчены, а поршни дизелей имеют более массивную и жесткую конструкцию.

Оригинальное решение, призванное снизить воздействие боковой силы, применили конструкторы двигателей фирмы «Фольксваген». Днище поршня в таких двигателях выполнено не под прямым углом к оси цилиндра, а немного скошено. По мнению конструкторов, это позволяет оптимальнее распределить нагрузку на поршень, и улучшить процесс смесеобразования в цилиндре при тактах впуска и сжатия.

porshen 3

Для того, чтобы удовлетворить противоречивые требования герметичности рабочей полости, предполагающие наличие минимальных зазоров между юбкой поршня и цилиндром, и предотвращения заклинивания детали в результате теплового расширения, в форме поршня применяют следующие конструктивные элементы:

    уменьшение жесткости юбки за счет специальных прорезей, компенсирующих ее тепловое расширение и улучшающих охлаждение нижней части поршня. Прорези выполняют на той стороне юбки, которая наименее нагружена боковыми силами, прижимающими поршень к цилиндру;

принудительное ограничение теплового расширения юбки вставками из материалов с меньшим, чем у основного металла, коэффициентом температурного расширения;

Последнее условие выполнить непросто, поскольку поршень нагревается по всему объему неравномерно и имеет сложную пространственную форму – в верхней части его форма симметрична, а в районе бобышек и на нижней части юбки имеются ассиметричные элементы. Все это приводит к неодинаковой температурной деформации отдельных участков поршня при его нагреве во время работы.
По этим причинам в конструкции поршня современных автомобильных двигателей обычно выполняют следующие элементы, усложняющие его форму:

    днище поршня имеет меньший диаметр по сравнению с юбкой и наиболее приближено в поперечном сечении к правильной окружности.
    Меньший диаметр сечения днища поршня связан с его высокой рабочей температурой и, как следствие, с большим тепловым расширением, чем в районе юбки. Поэтому поршень современного двигателя в продольном сечении имеет слегка коническую или бочкообразную форму, зауженную к днищу.
    Уменьшение диаметра в верхнем поясе конической юбки для поршней из алюминиевого сплава составляет 0,0003…0,0005D, где D – диаметр цилиндра. При нагреве до рабочих температур форма поршня по длине «выравнивается» до правильного цилиндра.

Очевидно, что на все эти ухищрения конструкторам приходится идти, чтобы придать поршню в нагретом до рабочих температур состоянии правильную цилиндрическую форму, обеспечив тем самым минимальный зазор между ним и цилиндром.

Наиболее эффективным способом предотвращения заклинивания поршня в цилиндре вследствие его теплового расширения при минимальном зазоре является принудительное охлаждение юбки и вставка в юбку поршня элементов из металла, имеющего низкий коэффициент температурного расширения. Чаще всего применяются вставки из малоуглеродистой стали в виде поперечных пластин, которые при отливке поршня помещаются в зону бобышек. В некоторых случаях вместо пластин применяются кольца или полукольца, заливаемые в верхнем поясе юбки поршня.

Температура днища алюминиевых поршней не должна превышать 320…350 ˚С. Поэтому для увеличения теплоотвода переход от днища поршня к стенкам делают плавным (в виде арки) и достаточно массивным. Для более эффективного теплоотвода от днища поршня применяют его принудительное охлаждение, брызгая на внутреннюю поверхность днища моторное масло из специальной форсунки. Обычно функцию такой форсунки выполняет специальное калиброванное отверстие, выполненное в верхней головке шатуна. Иногда форсунка устанавливается на корпусе двигателя в нижней части цилиндра.

porsh

Для обеспечения нормального теплового режима верхнего компрессионного кольца его располагают значительно ниже кромки днища, образуя так называемый жаровой или огневой пояс. Наиболее изнашиваемые торцы канавки под поршневые кольца часто усиливают специальными вставками из износостойкого материала.

В качестве материала для изготовления поршней широко применяют алюминиевые сплавы, основным достоинством которых является небольшая масса и хорошая теплопроводность. К недостаткам алюминиевых сплавов можно отнести невысокую усталостную прочность, большой коэффициент температурного расширения, недостаточную износостойкость и сравнительно высокую стоимость.

В состав сплавов кроме алюминия входят кремний (11…25%) и добавки натрия, азота, фосфора, никеля, хрома, магния и меди. Отлитые или отштампованные заготовки подвергают механической и термической обработке.

Значительно реже в качестве материала для поршней используют чугун, поскольку этот металл значительно дешевле и прочнее алюминия. Но, несмотря на высокую прочность и износостойкость, чугун обладает сравнительно большой массой, что приводит к появлению значительных инерционных нагрузок, особенно при изменении направления движения поршня. Поэтому для изготовления поршней быстроходных двигателей чугун не применяется.

f14c171s 100

Почему я решил совместить пост об этих двух понятиях постараюсь объяснить в следующей записи. А пока попробуем разобраться в данных терминах. Начнём с дезаксиала.

ce5c644s 960

Одна сила действует в направлении шатуна, а вторая сила действует в направлении перпендикулярном оси цилиндра. Эта сила прижимает поршень к стенке цилиндра.
При движении поршня вверх на такте сжатия сжимаемый воздух оказывает сопротивление перемещению поршня. Часть этой силы прижимает поршень к правой стенке цилиндра, если смотреть со стороны передней части двигателя.

Во время рабочего хода расширяющиеся газы с большой силой давят на поршень. Часть этой силы расходуется на прижатие поршня к левой стенке цилиндра. Не стоит думать, что эти силы незначительны. Боковая сила, прижимающая поршень к стенке цилиндра приблизительно равна 10% — 12% процентов, от силы, действующей в направлении оси цилиндра. Ранее упоминалось, что во время работы двигателя на днище поршня среднего легкового автомобиля действует сила в несколько тонн, следовательно, сила, прижимающая поршень к боковой стенке может быть равна нескольким сотням килограмм. Поскольку сила, действующая на поршень во время рабочего хода в направлении оси цилиндра значительно выше, силы, действующей на поршень во время такта сжатия, поверхность, к которой прижимается поршень, во время такта рабочего хода, называется основной упорной поверхностью.

Из всего сказанного вытекает, что при прохождении поршнем ВМТ между тактами сжатия и рабочего хода происходит перемещение поршня от вспомогательной упорной поверхности к основной. Поскольку на поршень действуют большие силы, а все процессы в двигателе происходят очень быстро, перемещение поршня происходи в форме удара. Для уменьшения силы удара при перекладке поршня ось поршневого пальца (вернее ось отверстия в бобышках поршня под поршневой палец) смещена в сторону основной упорной поверхности.

895c644s 960

Сила, возникающая в результате воздействия давления, равна произведению давления, умноженного на площадь, на которую действует давление. Поскольку ось поршневого пальца смещена в сторону основной упорной поверхности (1), площадь правой половины поршня стала несколько больше площади левой половины. В результате чего сила, действующая на правую половину поршня, будет больше силы, действующей на левую половину поршня. Поэтому, когда поршень остановится в ВМТ, в результате разности этих сил, нижняя часть поршня переместится к основной упорной поверхности.

А как только давление в камере сгорания начнёт увеличиваться, произойдёт полная перекладка поршня к основной упорной поверхности. Это позволяет произвести перекладку поршня без ударных нагрузок. При движении поршня в низ, при изменении угла шатуна к оси цилиндра и возрастания давления в цилиндре поршень оказывает давление на основную упорную поверхность (1).

Обычно смещение оси поршневого пальцы относительно оси поршня в автомобильных двигателях лежит в диапазоне 1,0 – 2,5 мм.

Учитывая имеющиеся смещения оси поршневого пальца, поршень допускается устанавливать только в одном направлении. Неправильна установка поршня приведёт к появлению ударных звуков во время работы двигателя. Обычно на днище поршня имеется метка, указывающая правильное направление установки поршня. Перед ремонтом двигателя тщательно изучите руководство по ремонту.”
Е.Н. Жарцов

Приведение поршня первого цилиндра в положение верхней мертвой точки (ВМТ)

motorist 012
motorist 022
motorist 032motorist 042
motorist 052
motorist 062
motorist 072
attention

Верхней мертвой точкой (ВМТ) называется наивысшая точка хода поршня в своем цилиндре. Строго говоря, в 4-тактных двигателях в процессе вращения коленчатого вала данное положение достигается каждым из поршней дважды: один раз в конце такта сжатия и второй — в конце выпускного такта. При выполнении настроек фаз газораспределения и установке угла опережения зажигания в подавляющем большинстве случаев используется положение ВМТ конца такта сжатия поршня (обычно первого цилиндра).

Необходимость в приведении поршня(ей) в положение ВМТ возникает при проведении многих процедур, в частности таких, как снятие/установка распределительного вала, компонентов привода ГРМ и распределителя зажигания.

Удостоверьтесь, что трансмиссия переведена в нейтральное положение, затем прочно взведите стояночный тормоз, либо подоприте задние колеса автомобиля противооткатными башмаками. Также иммобилизуйте систему зажигания, рассоединив электрические разъемы первичного (НВ) контура катушки (см. Главу Электрооборудование двигателя). Снимите свечи зажигания (см. Главу Настройки и текущее обслуживание).

Приведение любого из поршней в положение ВМТ производится путем проворачивания коленчатого вала двигателя одним из описанных ниже способов. Если смотреть на двигатель спереди (со стороны приводного ремня), нормальным направлением вращения коленчатого вала будет направление против часовой стрелки. Помните, что попытка проворачивания вала по часовой стрелке может привести к нарушению регулировок газораспределительного ремня.

a) Наиболее эффективным методом является проворачивание вала в нормальном направлении за болт, ввернутый в торец его передней цапфы при помощи торцевого ключа с храповым приводом;
b) Сэкономить время позволит применение дистанционного выключателя стартера (следуйте инструкциям изготовителей). Как только поршень окажется достаточно близко от ВМТ конца такта сжатия, стартер останавливается и дальнейшая подгонка осуществляется методом, описанным в пункте (а);
c) При наличии помощника, предварительное проворачивание двигателя может быть осуществлено короткими рывками с водительского места под руководством оператора. Принцип тот же, что и описанный в пункте (b). Окончательная корректировка, опять-таки, производится вручную, при помощи торцевого ключа (см. пункт а).

1. Запомните положение клеммы подсоединения свечного провода первого цилиндра на крышке распределителя. Если клемма не промаркирована, пройдитесь по проводу от свечи к крышке и нанесите соответствующую метку самостоятельно.

attention

Для маркировки свечной клеммы первого цилиндра на крышке распределителя обычно используется обозначение А1 (двигатели с VTEC), либо А (двигатели без VTEC).

2. Снимите крышку с распределителя и отложите ее в сторону (см. Главу Настройки и текущее обслуживание).

h127

3. Пометьте обод корпуса распределителя в точке непосредственно под клеммой первого цилиндра крышки.

4. Проверните коленчатый вал против часовой стрелки таким образом, чтобы белая метка ВМТ на его шкиве совместилась с треугольным вырезом указателя.

Источник

Оцените статью
Мебель
Adblock
detector
h128