спиртовое брожение какие бактерии

igrushka serdce igolki bol situaciya 53777 1280x720 Статьи

Спиртовое брожение

Спиртовое брожение осуществляется так называемыми дрожжеподобными организмами, а также некоторыми плесневыми грибками. Суммарную реакцию спиртового брожения можно изобразить следующим образом:

img726

Механизм реакции спиртового брожения чрезвычайно близок к гликолизу. Расхождение начинается лишь после этапа образования пирувата. При гликолизе пируват при участии фермента ЛДГ и кофермента НАДН восстанавливается в лактат. При спиртовом брожении этот конечный этап заменен двумя другими ферментативными реакциями – пируватдекарбо-ксилазной и алкогольдегидрогеназной.

В дрожжевых клетках (спиртовое брожение) пируват вначале подвергается декарбоксилированию, в результате чего образуется ацетальдегид. Данная реакция катализируется ферментом пируватдекарбоксилазой, который требует наличия ионов Mg и кофермента (ТПФ):

img728

Образовавшийся ацетальдегид присоединяет к себе водород, отщепляемый от НАДН, восстанавливаясь при этом в этанол. Реакция катализируется ферментом алкогольдегидрогеназой:

img730

Таким образом, конечными продуктами спиртового брожения являются этанол и СО2, а не молочная кислота, как при гликолизе.

Процесс молочнокислого брожения имеет большое сходство со спиртовым брожением. Отличие заключается лишь в том, что при молочнокислом брожении пировиноградная кислота не декарбоксилируется, а, как и при гликолизе в животных тканях, восстанавливается при участии ЛДГ за счет водорода НАДН.

Известны 2 группы молочно-кислых бактерий. Бактерии одной группы в процессе брожения углеводов образуют только молочную кислоту, а бактерии другой из каждой молекулы глюкозы «производят» по одной молекуле молочной кислоты, этанола и СО2.

Существуют и другие виды брожения, конечными продуктами которых могут являться пропионовая, масляная и янтарная кислоты, а также другие соединения.

Источник

Спиртовое брожение какие бактерии

Накопление этилового спирта в среде в анаэробных условиях наблюдается у разных групп эубактерий и группы эукариотных микроорганизмов — дрожжей.

Эубактерии

Способность осуществлять в анаэробных условиях спиртовое брожение по пути, описанному в предыдущем разделе, присуща некоторым эубактериям, принадлежащим к разным таксономическим группам, например Sarcina ventriculi, Erwinia amylovora.

S. ventriculi относится к группе грамположительных анаэробных кокков. Клетки неподвижные; делятся в трех плоскостях, поэтому в культуре часто образуют пакеты, состоящие из 64 и более клеток. Веществом, связывающим клетки в пакетах, служит целлюлоза. Описана способность образовывать эндоспоры. Аэротолерантный анаэроб. Единственный способ получения энергии — сбраживание Сахаров. Потребность в питательных веществах довольно высока (многочисленные аминокислоты и ряд витаминов).

E. amylovora относится к группе энтеробактерий. Это грамотрицательные подвижные палочки. Особенностью вида является его патогенность для растений. Факультативный анаэроб. В аэробных условиях получает энергию в процессе дыхания.

Помимо этилового спирта и CO2 в качестве продуктов брожения S. ventriculi в среде накапливается уксусная кислота и выделяется молекулярный водород, у E. amylovora накапливается молочная кислота. Разнообразие конечных продуктов у этих бактерий связано с тем, что пируват, образующийся при сбраживании глюкозы по гликолитическому пути, далее может метаболизироваться различно: восстанавливаться до молочной кислоты; подвергаться декарбоксилированию и последующему восстановлению, как описано в предыдущем разделе; подвергаться ферментативному расщеплению, приводящему к образованию ацетата и др.

У многих клостридиев и энтеробактерий среди продуктов брожения обнаруживают этиловый спирт, но путь его образования отличен от описанного в предыдущем разделе. Сбраживание сахаров до пировиноградной кислоты происходит по гликолитическому пути, дальнейшее же превращение пирувата идет не через пируватдекарбоксилазу. У названных групп бактерий пируват подвергается расщеплению, приводящему к образованию ацетил-КоА. Реакция катализируется пируватдегидрогеназой. Ацетил-КоА затем восстанавливается до ацетальдегида:

S-КоА + НАД-H2 ® CH3-COH + НАД+ + КоА-SH, а последний — до этанола.

Гетероферментативные молочнокислые бактерии накапливают в среде спирт, метаболизируя глюкозу по окислительному пентозофосфатному пути. В результате ряда ферментативных превращений образуется ацетилфосфат, восстановление которого в два этапа приводит к появлению молекулы этилового спирта.

Наконец, у бактерий Zymomonas mobilis с неясным систематическим положением, используемых в Мексике для получения национального спиртного напитка «пульке», разложение глюкозы до пировиноградной кислоты идет по пути Энтнера — Дудорова. Дальнейшее превращение пирувата происходит с участием пируватдекарбоксилазы и алкогольдегидрогеназы. Выход продуктов брожения такой же, как при спиртовом брожении по гликолитическому пути: по 2 молекулы спирта и CO2 на 1 молекулу сброженной глюкозы, но энергетический выход в два раза ниже, чем при гликолизе: всего 1 молекула АТФ на 1 молекулу сброженной глюкозы.

Z. mobilis — грамотрицательные подвижные бактерии, имеющие форму коротких палочек. Характеризуются высокими биосинтетическими способностями. Анаэробы, единственный способ получения энергии для которых — спиртовое брожение. Однако эти бактерии способны расти в присутствии молекулярного кислорода. Последний в этом случае используется для окисления части этанола до уксусной кислоты в соответствии с уравнением:

1 глюкоза + 1O2 ® 1 этиловый спирт + 1 уксусная кислота + 1,7CO2 + 0,2 молочная кислота Таким образом, молекулярный кислород существенно не меняет характера энергетического метаболизма Z. mobilis. В клетках бактерии обнаружены фрагменты ЦТК, цитохромы b, c, a2, каталаза. Наиболее вероятным представляется, что предки Z. mobilis — аэробы. Способ получения энергии за счет спиртового брожения — более позднее приспособление к условиям обитания.

Эукариоты

Основными продуцентами этилового спирта, имеющими широкое практическое применение, являются дрожжи — одноклеточные эукариотные микроорганизмы, принадлежащие к разным классам высших грибов. Наиболее распространенный способ размножения дрожжей — почкование. Дрожжи — аэробы со сформированным аппаратом дыхания, но в анаэробных условиях осуществляют спиртовое брожение по пути, рассмотренному в предыдущем разделе, т. е. получают энергию за счет субстратного фосфорилирования. Конструктивный метаболизм дрожжей основан на их хорошо развитых биосинтетических способностях. Есть виды дрожжей, развивающиеся на простых синтетических средах; эти дрожжи способны синтезировать все необходимые им сложные органические соединения. Существуют виды,. нуждающиеся в определенных витаминах группы В. Добавление к питательной среде веществ, содержащих комплекс витаминов, аминокислот, сахаров приводит, как правило, к заметному стимулированию роста дрожжей.

Ряд отраслей промышленности основан на жизнедеятельности дрожжей (виноделие, производство спирта, пивоварение, хлебопекарное производство). Сырьем для производства спирта с использованием дрожжей служат углеводы растительного происхождения (картофель, злаки), отходы пищевой (мелассы) и целлюлозно-бумажной (щелока) промышленности, различные сельскохозяйственные отходы, а также гидролизаты древесины. Сбраживание дрожжами виноградного сока лежит в основе виноделия; сбраживание пивного сусла, приготовленного из проросших зерен ячменя, специальными пивными дрожжами — в основе пивоварения.

О путях образования этилового спирта

Изложенные данные позволяют составить определенное представление о том, насколько широко распространено образование этилового спирта среди разных групп эубактерий и насколько различны метаболические пути, ведущие к его синтезу. Из этого следует, что накопление в культуральной среде этилового спирта само по себе не может служить указанием на место процесса, приводящего к его образованию, в эволюции. Этиловый спирт у эубактерий может быть одним из конечных продуктов как эволюционно более ранних (гликолиз), так и более поздних (окислительный пентозофосфатный цикл, путь Энтнера — Дудорова) катаболических процессов. До сих пор среди эубактерий не обнаружены организмы, сохранившие черты примитивности энергетического и конструктивного метаболизма, у которых спиртовое брожение служило бы единственным способом получения энергии. Тот факт, что в самом «классическом» виде спиртовое брожение проявляется у дрожжей, форм эукариотных, не может, как нам кажется, ставить под сомнение его место в эволюции анаэробных энергетических процессов.

Пропионовокислое брожение

Из рассмотренных двух типов брожения видно, что ключевым соединением в обоих процессах является пируват, поскольку в конечном итоге специфика брожения определяется дальнейшей судьбой пирувата. Основная задача последующих реакций — регенерирование молекулы НАД+ и возвращение ее в клеточный метаболизм. Прямое восстановление пирувата с помощью НАД-H2 до молочной кислоты реализуется в молочнокислом брожении. Другая возможность регенерирования НАД+ — «сбрасывание» водорода с НАД-H2 на фрагменты, образуемые при метаболизме пирувата, — имеет место в спиртовом брожении, осуществляемом дрожжами и некоторыми видами бактерий. Третья возможность связана с синтетическим процессом — усложнением молекулы пирувата, в результате которого создается более окисленная молекула акцептора, способная принять больше электронов с восстановленных переносчиков. Это происходит при присоединении к молекуле пирувата CO2, приводящем к формированию четырехуглеродного скелета. Процесс получил название гетеротрофной ассимиляции углекислоты.

Рис. 54. Превращение пировиноградной кислоты в пропионовую при пропионовокислом брожении: Ф1 — метилмалонил-КоА-карбоксилтрансфераза; Ф2 — малатдегидрогеназа; Ф3 — фумараза: Ф4 — фумаратредуктаза; Ф5 — КоА-трансфераза; Ф6 — метилмалонил-КоА-мутаза (по Daglev, Nicholson. 1973; Rose. 1971)

Впервые гетеротрофная ассимиляция углекислоты была обнаружена в 1936 г. X. Вудом и К. Веркманом (Н. Wood, C. Werkman) при изучении сбраживания глицерина пропионовыми бактериями. Карбоксилирование пирувата, приводящее к образованию щавелевоуксусной кислоты, получило название реакции Вуда — Веркмана. У эубактерий обнаружены различные реакции карбоксилирования пирувата или его фосфорилированного производного. Показано, что реакции карбоксилирования имеют место у всех гетеротрофных прокариот, а также в клетках всех эукариотных организмов, включая высшие растения и животных. Кроме того, в больших масштабах в природе реакции связывания CO2 осуществляются автотрофными. организмами в процессе хемо- и фотосинтеза.

В пропионовокислом брожении мы имеем дело с реализацией третьей возможности превращения пирувата — его карбоксилированием, приводящим к возникновению нового акцептора водорода — ЩУК. Восстановление пировиноградной кислоты в пропионовую у пропионовокислых бактерий протекает следующим образом (рис. 54). Пировиноградная кислота карбоксилируется в реакции, катализируемой биотинзависимым ферментом, у которого биотин выполняет функцию переносчика CO2. Донором CO2-группы служит метилмалонил-КоА. В результате реакции транскарбоксилирования образуются ЩУК и пропионил-КоА:

Рассмотрим теперь дальнейшую судьбу каждого из двух продуктов реакции, а также вопрос о происхождении одного из субстратов реакции — метилмалонил-КоА. (Основным источником пировиноградной кислоты служит процесс гликолитического расщепления гексоз или окислительные превращения, если в качестве субстрата брожения используют, например, диоксиацетон или глицерин.) ЩУК в результате трех ферментативных этапов (аналогичных реакциям 6, 7, 8 цикла трикарбоновых кислот, см. рис. 92) превращается в янтарную кислоту:

Следующая реакция заключается в переносе КоА-группы с пропионил-КоА на янтарную кислоту (сукцинат), в результате чего образуется сукцинил-КоА и пропионовая кислота:

Образовавшаяся пропионовая кислота выводится из процесса и накапливается вне клетки. Сукцинил-КоА превращается в метилмалонил-КоА:

В состав кофермента метилмалонил-КоА-мутазы входит витамин B12. Перегруппировки типа, указанного в приведенном выше уравнении, характерны для реакций, катализируемых ферментами, содержащими витамин B12. В описанной выше реакции происходящие перемещения атомов в молекуле сводятся к двум типам: изменению углерод-углеродных связей и перераспределению водорода между углеродными атомами (рис. 55). Реакция, катализируемая мутазой, — ключевая в пропионовокислом брожении, так как в ней подготавливается субстрат, являющийся предшественником пропионовой кислоты.

Из схемы, представленной на рис. 54, можно видеть, что образование пропионовой кислоты из пировиноградной — результат взаимосвязанного функционирования двух циклов: цикла переноса одноуглеродного фрагмента и цикла переноса кофермента А.

Рис. 55. Механизм реакции, катализируемой метилмалонил-КоА-мутазой. Цифрами в кружочках пронумерованы атомы углерода

Кофермент А, принимающий активное участие в пропионовокислом брожении, относится к группе мононуклеотидов. Он содержит аденин, Д-рибозу, пирофосфатную группу и пептидоподобное соединение, в состав которого входит пантотеновая кислота — еще один витамин группы В. Функция кофермента А заключается в переносе ацильных групп (RCO

). Ацильная форма КоА представляет собой тиоэфир. Тиоэфирная связь, образующаяся между карбоксильной группой кислоты и тиоловой группой КоА, является высокоэнергетической.

Итак, разобранный выше поток реакций приводит к синтезу пропионовой кислоты. Однако пропионовокислое брожение — более сложный процесс, поскольку наряду с пропионовой кислотой в качестве продуктов брожения образуются уксусная, янтарная кислоты и CO2. В схеме, изображенной на рис. 54, янтарная кислота образуется как промежуточное соединение на пути, ведущем к синтезу пропионата; но она может накапливаться в среде и как конечный продукт. К образованию сукцината, количество которого зависит от содержания CO2 в среде, ведет последовательность реакций, начинающаяся с карбоксилирования ФЕП (рис. 56), в которой остаток фосфорной кислоты ФЕП переносится на неорганический фосфат, что приводит к образованию пирофосфата:

ФЕП + CO2 + ФН ® ЩУК + пирофосфат.

Дальнейшие превращения ЩУК до янтарной кислоты аналогичны реакциям 2 — 4, изображенным на рис. 54.

Многие пропионовые бактерии сбраживают глюкозу так, что на каждую молекулу пирувата, окисленную до уксусной кислоты и CO2, приходятся 2 молекулы пирувата, восстановленные до пропионовой кислоты. Путь превращения пирувата, приводящий к образованию уксусной кислоты и CO2, представлен на рис. 56. На этом пути имеют место окислительно-восстановительные реакции, идущие с вовлечением новых молекул НАД+. Пируват подвергается окислительному декарбоксилированию с участием кофермента А:

Процесс катализируется пируватдегидрогеназным комплексом и практически необратим. В результате образуется ацетил-КоА, содержащий высокоэнергетическую тиоэфирную связь, ацетильная группа с которого переносится на неорганический фосфат, что приводит к образованию ацетилфосфата и регенерированию кофермента А:

Рис. 56. Пути образования янтарной, уксусной кислот и CO2 пропионовыми бактериями: Ф1 — ФЕП-карбокситрансфосфорилаза; Ф2 — пируватдегидрогеназа; Ф3 — фосфотрансацетилаза; Ф4 — ацетаткиназа

В этой реакции энергия, заключенная в тиоэфирной связи, реализуется в виде высокоэнергетической фосфатной связи ацетилфосфата.

И наконец, ацетилфосфат донирует фосфатную группу на АДФ с образованием АТФ и уксусной кислоты:

Итак, на участке от пирувата до ацетата образуется 1 молекула НАД-H2 и 1 молекула АТФ. Энергетическое значение для пропионовых бактерий этого участка метаболического пути очевидно и не требует обсуждения.

Кроме основных продуктов в разных количествах в культуральной жидкости пропионовых бактерий обнаружены молочная, муравьиная, изовалериановая кислоты, этиловый и пропиловый спирты, уксусный и пропионовый альдегиды, ацетоин, диацетил. Состав конечных продуктов брожения зависит от культуры бактерий, состава среды и условий культивирования. Это касается как видов накапливаемых продуктов, так и количественных соотношений между ними.

Теоретически пропионовое брожение должно приводить к образованию 4 молекул АТФ при сбраживании 1,5 молекулы глюкозы. Однако было обнаружено, что выход энергии несколько выше. Источником дополнительных молекул АТФ, возможно, является этап восстановления фумаровой кислоты до янтарной, катализируемый фумаратредуктазой (см. рис. 54). Получены экспериментальные данные в пользу того, что восстановление фумарата до сукцината — процесс, в результате которого некоторые первично анаэробные эубактерии могут синтезировать АТФ по механизму фосфорилирования, сопряженного с переносом электронов. Показано, что фумаратредуктаза связана с мембраной и образует комплекс с переносчиком электронов хиноном. В составе комплекса обнаружен цитохром b. Фумаратредуктазная система найдена у пропионовых бактерий. Этой системе придается большое значение в эволюции как, возможно, первому шагу на пути создания многокомпонентных электронтранспортных цепей у эубактерий (см. гл. 15).

Энергетическая эффективность пропионовокислого брожения связана также с выработкой пропионовыми бактериями новых метаболических способностей: реакций транскарбоксилирования и перегруппировки, участия в процессе КоА-производных. Образование дикарбоновой кислоты из пировиноградной с использованием механизма транскарбоксилирования вместо прямого карбоксилирования пирувата позволяет избежать дополнительных энергетических затрат на этом этапе брожения. Все это вместе взятое позволяет рассматривать пропионовокислое брожение как более совершенный из рассмотренных до сих пор способов получения энергии в анаэробных условиях.

Пропионовокислые бактерии

В эту группу, объединяемую в род Propionibacterium, входят грамположительные, неподвижные, не образующие спор палочковидные бактерии, размножающиеся бинарным делением. В зависимости от условий культивирования и цикла развития форма клетки может меняться до кокковидной, изогнутой или булавовидной. Типовой вид — P. freudenreichii.

Большинство пропионовокислых бактерий — аэротолерантные анаэробы, получающие энергию в процессе брожения, основным продуктом которого является пропионовая кислота. Аэротолерантность их обусловлена наличием полностью сформированной ферментной системы защиты от токсических форм кислорода (супероксидный анион, перекись водорода). У пропионовокислых бактерий обнаружены супероксиддисмутазная, каталазная и пероксидазная активности. Внутри группы отношение к O2 различно. Некоторые виды могут расти в аэробных условиях.

Брожение не исчерпывает всех возможностей получения энергии этой группой эубактерий. Хотя гликолитическое расщепление глюкозы с образованием в качестве обязательного промежуточного соединения пировиноградной кислоты является основным путем разложения глюкозы, кроме этого пути в группе пропионовых бактерий обнаружен окислительный пентозофосфатный путь, реакции ЦТК, активное «флавиновое дыхание» и окислительное фосфорилирование, сопряженное с электрон-транспортной системой. Вклад каждого из этих путей в общий энергетический метаболизм зависит как от вида бактерий, так и от конкретных внешних условий. Эволюция пропионовых бактерий определенно шла по пути приспособления к аэробным условиям. У некоторых видов обнаружен «эффект Пастера»: в присутствии кислорода воздуха происходит переключение с брожения на дыхание. Пропионовые бактерии могут синтезировать гемсодержащие белки. В их клетках обнаружены цитохромы.

Важную роль в аэробном метаболизме пропионовых бактерий играет «флавиновое дыхание», которому приписывают основную связь этих бактерий с молекулярным кислородом. В процессе «флавинового дыхания» происходит перенос двух электронов с флавопротеинов на O2, сопровождающийся образованием перекиси водорода, которая разлагается бактериальной каталазой и пероксидазой. Однако «флавиновое дыхание» не связано с получением клеткой энергии. Транспорт электронов в дыхательной цепи некоторых пропионовых бактерий сопровождается образованием АТФ, что может указывать на подключение к этому процессу цитохромов, однако эффективность окислительного фосфорилирования низка. Последнее, вероятно, объясняется несовершенством механизмов сопряжения. В то время как в аэробных условиях конечным акцептором электронов с НАД-H2 является O2, в анаэробных условиях им может быть нитрат, фумарат.

Источник

Спиртовое брожение

Процесс превращения микроорганизмами содержащегося в субстрате сахара в спирт и углекислый газ получил название спиртового брожения. Человечество знало и использовало этот микробиологический процесс в своей жизни значительно раньше, чем был открыт мир микроорганизмов. Упоминания о приготовлении опьяняющих напитков из винограда, плодов, ягод, зерна и пр. встречаются в древнейших летописях многих стран и народов.

В настоящее время о спиртовом брожении утвердилось представление как о сложном биохимическом процессе: сбраживание сахара живыми дрожжевыми клетками рассматривается как важнейшая часть их обмена веществ.

Возбудители спиртового брожения

Наиболее энергичными возбудителями спиртового брожения являются дрожжи Saccharomyces cerevisiae (рис. 21). Они очень широко распространены в природе и встречаются в почве, в воздухе, на фруктах, винограде, ягодах, особенно в летнее время.

Кроме дрожжей, возбуждать спиртовое брожение способны и отдельные представители плесневых грибов, дрожжеподобные организмы и некоторые бактерии. Спиртовое брожение, возбуждаемое плесневыми грибами и бактериями, протекает с иными количественными соотношениями между основными и побочными продуктами, а также с образованием таких веществ, которые не возникают при брожении, возбуждаемом дрожжами.

При недостатке кислорода спиртовое брожение наблюдается в клетках высших растений. При неправильном хранении сырья на приемной площадке консервного завода (навалом, без достаточной вентиляции и при высокой температуре) в растительных клетках наблюдается переход от нормального аэробного дыхания к анаэробному дыханию, при котором расщепление сахара протекает с образованием спирта и CO2. Свойства плодов и овощей при этом резко ухудшаются. Растительные клетки становятся дряблыми, изменяется химический состав сока. От сохраняемой массы сырья начинает исходить «спиртовой» запах. В конечном итоге значительное накопление спирта приводит к отмиранию растительных тканей. Плоды и овощи утрачивают естественный иммунитет и легко подвергаются микробиальной порче.

image1 29

Химизм спиртового (алкогольного) брожения

1. Брожение является целиком ферментативным процессом. Роль дрожжей при спиртовом брожении заключается в том, что они вырабатывают ферменты, осуществляющие глубокое расщепление такого сложного органического вещества, каким является сахар.

3. В спиртовом брожении обязательное участие принимает фосфорная кислота, перенос которой осуществляется аденозин-трифосфорной кислотой (АТФ). Последовательный ход превращений моносахаридов по современной схеме спиртового брожения представлен в табл. 3.

Реакция восстановления уксусного альдегида в этиловый алкоголь является как бы завершающим этапом брожения.

image1 30

Наиболее благоприятной концентрацией сахара в бродящей среде является концентрация 10-20%. По мере брожения в среде повышается содержание спирта, который угнетающе действует на дрожжи. При спиртуозности 18% об. (а для некоторых рас дрожжей при 22% об.) брожение останавливается. Такая концентрация спирта для дрожжей является предельной. Большое значение для брожения имеет и температура среды. Лучше всего брожение протекает при 15-25 °С. При 35 °С наблюдается затормаживание брожения, а при 50 °С оно прекращается совсем, так как происходит инактивирование бродильных ферментов. Минимальная температура, при которой наблюдается еще действие зимазы, 4-5°С. Падение бродильной способности дрожжей с повышением температуры связано с возрастанием ядовитого действия спирта на зимазу.

Применяемая раса дрожжей оказывает большое влияние на результаты спиртового брожения. Одни дрожжи способны накапливать больше спирта, другие больше продуцируют альдегидов, глицерина, обусловливают накопление ароматических веществ, слагающих букет напитка (вина). К настоящему времени выведено большое количество дрожжевых рас (чистых культур), с самыми разнообразными свойствами, необходимыми для соответствующего производства.

Спиртовое брожение нормально протекает в средах с довольно высокой кислотностью (pH 3,5-4,5) и в анаэробных условиях. Если в бродящую среду продувать воздух, то дрожжи переходят к нормальному (аэробному) дыханию, начинают усиленно почковаться, что в конечном итоге приводит к резкому увеличению их живой массы. Это широко используют при получении прессованных дрожжей.

Техническое использование спиртового брожения

Спиртовое брожение широко используется в производственно-хозяйственной деятельности человека. В виноделии, применяя определенную расу дрожжей, оказывающую специфическое влияние на вкусовые и ароматические свойства напитка, и осуществляя полное выбраживание сусла либо приостанавливая брожение на определенном этапе, можно получить тот или иной тип вина. Удачный подбор дрожжевых рас при изготовлении виноградных вин дает возможность значительно улучшить их качество, придать им особый букет. В частности, хересные дрожжи Sacch. oviformis var. cheresiensis обусловливают появление в вине особого хересного букета, напоминающего аромат сигарного дыма. Шампанские дрожжи должны быть холодоустойчивыми, обладать способностью сбраживать сахарозу при повышенных давлениях углекислоты.

В пивоварении дрожжи влияют на качество напитка (пива) еще сильнее, так как состав пивного сусла более однообразен, чем у виноградных или плодово-ягодных соков. Чистые культуры дрожжей, используемые в пивоварении, хорошо осветляют пиво, придают ему приятный вкус и пр.

Не менее важное значение имеет спиртовое брожение в хлебопечении. Для разрыхления и подъема теста требуется быстрое и обильное образование углекислого газа. При выпечке объем углекислого газа увеличивается вдвое, что способствует получению пористого хлеба. В хлебопекарной промышленности используют также соответствующие дрожжевые расы.

При получении кисломолочных продуктов и при квашении овощей возникающие продукты спиртового брожения придают продуктам специфические вкусовые качества. При получении натуральных виноградных и плодово-ягодных соков, в которых содержание спирта не должно превышать 0,5% об., спиртовое брожение подавляют. Для этого пользуются различными технологическими приемами: охлаждением, пастеризацией, сульфитированием или введением в консервируемый сок сорбиновой кислоты.

В спиртовой промышленности сырьем для производства спирта могут служить картофель, зерновые культуры, а также отходы сахарного производства (черная патока), продукты гидролиза древесины и отходы целлюлозно-бумажной промышленности. Из продуктов гидролиза древесины получают значительные количества спирта, названного гидролизным. Небольшие количества спирта для специальных целей получают из виноградного и ягодного сырья.

Дрожжевые клетки не содержат фермента амилазы, поэтому крахмалсодержащее сырье перед сбраживанием предварительно осахаривают с помощью ячменного солода или амилазы, получаемой из некоторых грибов (Aspergillus oryzae).

Спиртовые дрожжи относятся к группе Saccharomyces сегеvisiae, раса XII. Эти дрожжи сбраживают глюкозу, фруктозу, сахарозу, мальтозу, галактозу и частично раффинозу. В сбраживаемом заторе они накапливают до 13% об. спирта.

Источник

Оцените статью
Мебель
Adblock
detector